

Famine, food, neoliberalism and choices that need to be...

Published: January 12, 2026, 11:25 pm

In an important report on recent trends in famines published in the Financial Times last night, [the following was noted](#):

For decades, the number of people dying from famine was in retreat, reduced to almost nothing by a world intolerant of witnessing people starving to death.

Not anymore. From Sudan to Afghanistan, Yemen and Gaza — where a UN-backed panel declared a famine on Friday — experts say more people are dying of hunger as public opinion shrugs and humanitarian agencies lose their ability to counter leaders willing to use food as a weapon.

They added:

"About 10 years ago, famines began to make a return, and over the past few years we have seen the numbers dying from starvation begin to escalate in a terrifying way," said Alex de Waal, a famine expert and executive director of the World Peace Foundation at Tufts University's Fletcher School of Law and Diplomacy.

The resurgence, said experts, has resulted partly from a weak humanitarian response, hobbled by a declining commitment to multilateralism and reduced aid budgets.

To put this another way, which the Financial Times did not, or at least, at most implied, the rise of neoliberal and neofascist culture is being reflected in an increase in the prevalence of famine around the world. This is not a natural phenomenon. What we are seeing is the creation of human-made crises.

I found this particularly relevant in the context of [some of the responses](#) that were made to my discussion of the need for inward migration to tackle the UK pension crisis, posted on this blog yesterday, which was reflected [in my blog on the same issue](#) published this morning. As a consequence, I did something that I have never done before, which was to ask ChatGPT 5.0 to prepare a report for me on the current capacity of the world to deliver sufficient food to feed its population of human beings.

My brief, or prompt to use AI jargon, was as follows:

Can the world continue to grow sufficient food to meet the needs of its growing population, or is climate change, plus other crises that are going to create a situation where there will, inevitably, be either food shortages, or even famine, giving rise to widespread migration, and potentially population loss.

If so, what are the most likely causes? Where will these problems be seen first, and in what crops, and what mitigation techniques can be used?

I am looking for a summary of around 1000 words for use on the Funding the Future blog, but to be written in summary format, suggesting it comes from ChatGPT, and not in my usual blogging style. You may, however, assume an intelligent, informed, reader who understands political economy and who wishes to appraise this data within the context of the stresses that such a crisis will give rise to.

This was the response that I got, which I have not edited in any way, except to reduce the boldness of some of the headings:

Global food outlook under climate & systemic stress — a ChatGPT briefing (25 Aug 2025)

Bottom line: On present evidence, the world can still produce enough calories to feed everyone, but the reliability of that supply is eroding. Climate change is already slowing productivity growth and amplifying shocks; when combined with conflict, trade restrictions, input-price volatility and ecological degradation, the risk profile shifts from chronic under-nutrition toward recurrent, acute food crises concentrated in climate- and conflict-exposed regions. Avoiding widespread shortages or famine is still feasible, but only with rapid investment in adaptation, stronger social protection and smarter trade and reserve policies.

1) Where the world stands now

*

Hunger has plateaued at high levels. Roughly **733 million** people faced hunger in 2023 (one in eleven globally; one in five in Africa), and almost **2.33 billion** experienced moderate or severe food insecurity. These levels have been stubborn for three years despite record global harvests in several staples—underscoring that today's hunger is often about access and shocks, not absolute global output.

*

Climate change is already biting. The IPCC finds human-induced warming has **slowed growth in agricultural productivity** over the last half-century, especially in

mid- and low-latitudes. Empirical estimates suggest that, absent strong adaptation, **each +1 °C** of global warming reduces average global yields by about **-6% (wheat), -7% (maize), -3% (rice), and -3% (soybean)**.

*

Acute food crises are rising. In **2024**, **~295 million people** across 53 countries faced acute food insecurity driven by **conflict, economic shocks and climate extremes**. Recent famine designations (e.g., **Gaza City, Aug 2025**) highlight how starvation is increasingly **man-made**, triggered by siege, displacement and blocked aid rather than global production failure.

2) What is driving risk higher?

*

Heat, drought and floods: More frequent extremes compress planting/harvest windows and trigger simultaneous crop failures across breadbaskets. Maize is especially heat-sensitive during pollination; wheat is vulnerable to drought and spring heat; rice suffers from flood and salinity stress in deltas.

*

Water stress and groundwater depletion: Aquifers underpinning global grain systems (Indo-Gangetic, North China Plain, US High Plains) are falling rapidly, with **accelerating declines in ~30% of regional aquifers**. Without reform, irrigation reliability—and thus yields—will degrade in several hotspots.

*

Sea-level rise & salinization: **Mekong** and **Ganges-Brahmaputra** deltas face saline intrusion and land subsidence, cutting rice productivity and profitability and prompting land-use change.

*

Trade and policy shocks: Export restrictions (notably India's 2023 curbs on non-basmati rice, later relaxed with price floors/duties) lifted global rice prices and tightened availability for import-dependent countries, illustrating how policy can magnify climate-related supply jitters.

*

Fertiliser and energy volatility: The 2021-22 spike—compounded by the Ukraine war—cut affordability and raised fears of lower application rates and yield drag; prices eased in 2023-24 but risks persist given natural gas dependence and geopolitical tensions.

*

Ecological constraints: Pollinator declines threaten many high-value crops (fruits, nuts, coffee, cocoa) and reduce yield stability; fisheries face declining catch potential in warming oceans, shifting protein availability for coastal populations.

*

Conflict and the weaponization of food: Large-scale crises in **Sudan, Yemen, Afghanistan and Gaza** show how conflict, blockade and underfunded aid can produce famine even when global supplies are ample.

3) Where problems likely emerge first (and in which crops)

*

Horn of Africa & Sahel: Recurrent droughts, fragile governance and conflict raise the likelihood of multi-season failures and livestock losses, with spillovers into migration. Staples: sorghum, millet, maize; also livestock feed and pastoral systems at risk.

*

South Asia (Indo-Gangetic plain; coastal deltas): Heat stress on wheat, groundwater depletion for rice/wheat systems, and saline intrusion in deltas (Bangladesh, India, Vietnam). Staples: rice and wheat; also vegetables and aquaculture in deltaic zones.

*

Middle East & North Africa: Chronic water scarcity plus import dependence exposes populations to price spikes from global markets (wheat, barley, cooking oils).

*

Central America's Dry Corridor: Maize and beans vulnerable to erratic rainfall (ENSO-linked), driving rural-urban and northward migration in bad years. (Risk well-documented in regional assessments; policy sensitivity to ENSO persists.)

*

West Africa (cocoa/coffee belt): Heat and pest pressures reduce suitability zones for cocoa and arabica coffee, with major livelihood implications. (Synthesised in IPCC/FAO sector chapters.)

*

Marine fisheries (tropics & upwelling systems): Shifts in maximum catch potential under higher warming levels reduce local fish protein, affecting food security and trade balances.

Crop-specific sensitivities to watch:

*

Maize: pronounced yield losses per degree warming; high heat sensitivity at flowering—US Corn Belt, Sub-Saharan Africa, South Asia.

*

Wheat: drought/heat in spring; water competition in MENA and South Asia.

*

Rice: delta salinisation; flood extremes; methane-linked practices under scrutiny.

*

High-value horticulture & tree crops: pollinator dependence and heat stress (fruit/nuts, cocoa, coffee).

4) What would prevent shortages and famine? A mitigation/adaptation portfolio

A. Invest in climate-resilient production

*

Breeding & seeds: scale **heat/drought/salt-tolerant** varieties; speed trait deployment via public breeding and open-access germplasm. CGIAR estimates sizable yield gains for stress-tolerant seeds in African conditions.

*

Agronomy: no-till/cover crops, diversified rotations, agroforestry, shade systems (for cocoa/coffee), precision fertiliser to stabilise yields and cut emissions.

B. Manage water as the binding constraint

*

Groundwater governance: price electricity for pumping rationally; shift procurement incentives away from water-intensive crops in depleted basins; invest in **micro-irrigation** and **managed aquifer recharge**. Evidence from India shows procurement and power policy reform are central levers. Global data confirm **accelerating aquifer declines** without intervention.

*

Delta protection: salinity barriers, upstream flow regimes, climate-resilient rice/aquaculture systems, and planned transitions where feasibility is low.

C. Reduce avoidable demand for land and inputs

*

Cut losses and waste: ~14% of food is lost post-harvest to retail; ~17% wasted in retail/households. Tackling loss/waste is a fast, cost-effective resilience win with climate co-benefits (8-10% of GHGs linked to FLW).

*

Re-examine biofuel mandates in tight markets; prioritise food over fuel when stocks are low. (Policy recommendation widely discussed in WRI/FAO literature.)

D. Make trade and stocks shock-absorbers, not amplifiers

*

Disciplined export policies: avoid sudden bans; use transparent price bands/minimum export prices rather than outright prohibitions; coordinate via AMIS. The Indian rice episode is a case study in how abrupt controls propagate global price spikes.

*

Public grain reserves & social protection: modest, well-managed reserves plus targeted cash/food transfers blunt price shocks and prevent hunger spirals.

E. Protect the ecological foundations

*

Pollinators: habitat corridors, pesticide risk reduction, floral diversity on farms; diversify away from single-pollinator dependence for critical crops.

*

Fisheries & aquaculture: ecosystem-based management; climate-ready mariculture; invest in cold chain and sanitary capacity to stabilise fish protein supplies under warming.

F. Finance and governance

*

Close the adaptation finance gap in agriculture (currently a small share of climate finance); scale climate information services, early-warning, and index insurance for smallholders. (Recent analyses stress under-investment despite high returns.)

5) Outlook for migration and population impacts

Expect episodic, regional crises—especially in conflict-affected and water-stressed regions—to drive **internal displacement and cross-border migration** during bad climate years. Without governance improvements, some rural areas will see **progressive livelihood loss** (e.g., salinising deltas, collapsing aquifers), leading to planned or forced exits from farming. Population loss via famine is **not inevitable** under current global production potential; historically, famine in recent decades has been largely **political**—a function of war and access—not a global shortage of food. The policy implication is clear: invest to **stabilise production, buffer markets, and protect people**—and famines remain preventable.

Notes

Prepared by ChatGPT as a neutral evidence summary for an informed readership in political economy. Key sources: IPCC AR6 WGII (Food & Fibre), FAO/WHO SOFI 2024-25, WFP/FSIN GRFC 2025, Zhao et al. (PNAS 2017) on crop sensitivities, Nature (2024) on groundwater, FAO/UNEP on food loss and waste, FAO SOFIA on fisheries, and IFPRI on rice trade policy.

In summary, if we are in trouble at present, it is because of the failure of human choices, and not because it is impossible for us to feed everyone in the world at this point in time.

Whether this remains the case is, I accept, open to doubt. Food shortages resulting from climate change will, inevitably, arise unless action is taken to tackle that issue, and it is not now at all clear that there is a willingness amongst countries around the world to do that. In other words, it is entirely possible that human action will create a worldwide and increasing risk of famine that will, in turn, give rise to a worldwide risk of migration that might be unstoppable. Hungry people might move because they have no choice but to do so, unless violence is used against them to prevent that from happening, which will then condemn them to death.

Why does this matter, and why raise the issue this morning? That is partly because this is clearly a key component in the long-term migration debate, which we must have and

which is moving in the wrong direction at present as a consequence of deliberate choice by UK politicians.

It is also because, unless we recognise this risk, we are, in fact, by our current actions choosing to cull future populations, whether we like it or not. I do not like that prospect, and believe that we have a duty to act to prevent unnecessary famine arising, wherever it might occur. To pretend otherwise is, I think, wrong. In that case, I believe this risk needs to be addressed.

Perhaps, though, most importantly, the reason for raising this is a very simple one. Deaths as a consequence of climate change, famine, the forced resulting migration, war, and much else are not inevitable. They are avoidable. But, they are only preventable by human choice, just as they are being created by human choice. I do not accept the inevitability of these things happening. However, in that case, they need to be discussed, because choices have to be made, and that is why I think it is important to highlight them in the context of the discussion around migration, which, it seems, we can no longer avoid.